首页> 外文OA文献 >Determining the best attributes for surveillance video keywords generation
【2h】

Determining the best attributes for surveillance video keywords generation

机译:确定监控视频关键字的最佳属性   代

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic video keyword generation is one of the key ingredients in reducingthe burden of security officers in analyzing surveillance videos. Keywords orattributes are generally chosen manually based on expert knowledge ofsurveillance. Most existing works primarily aim at either supervised learningapproaches relying on extensive manual labelling or hierarchical probabilisticmodels that assume the features are extracted using the bag-of-words approach;thus limiting the utilization of the other features. To address this, we turnour attention to automatic attribute discovery approaches. However, it is notclear which automatic discovery approach can discover the most meaningfulattributes. Furthermore, little research has been done on how to compare andchoose the best automatic attribute discovery methods. In this paper, wepropose a novel approach, based on the shared structure exhibited amongstmeaningful attributes, that enables us to compare between different automaticattribute discovery approaches.We then validate our approach by comparingvarious attribute discovery methods such as PiCoDeS on two attribute datasets.The evaluation shows that our approach is able to select the automaticdiscovery approach that discovers the most meaningful attributes. We thenemploy the best discovery approach to generate keywords for videos recordedfrom a surveillance system. This work shows it is possible to massively reducethe amount of manual work in generating video keywords without limitingourselves to a particular video feature descriptor.
机译:视频关键字自动生成是减轻安全人员分析监控视频负担的关键要素之一。关键字orattributes通常是根据监视的专业知识手动选择的。大多数现有的作品主要针对依赖广泛的手动标注的监督学习方法或假设概率特征是使用词袋法提取特征的分层概率模型;从而限制了其他特征的利用。为了解决这个问题,我们将注意力转向自动属性发现方法。但是,尚不清楚哪种自动发现方法可以发现最有意义的属性。此外,关于如何比较和选择最佳自动属性发现方法的研究很少。本文基于有意义的属性之间呈现的共享结构,提出了一种新颖的方法,使我们能够在不同的自动属性发现方法之间进行比较,然后通过在两个属性数据集上比较各种属性发现方法(例如PiCoDeS)来验证我们的方法。我们的方法能够选择发现最有意义的属性的自动发现方法。然后,我们采用最佳发现方法为从监视系统录制的视频生成关键字。这项工作表明,可以在不将自己局限于特定视频特征描述符的情况下,极大地减少生成视频关键字的人工工作量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号